IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Study on Steganography Using Reversible **Texture Synthesis**

R. L. Sable

M.E. Student, MSS's CET, Jalna

Abstract: It is a unique approach for steganography using a reversible texture synthesis where rather than using existing image the algorithm will create new texture image using source texture and embeds message by texture synthesis process. The new image with similar appearance can be re-created by using texture synthesis process. The size of new image can be user specified. The important concept behind this kind of steganography is texture synthesis process. We can extract the embedded message and original texture image from final stego synthetic texture image. This new technique of steganography using reversible texture synthesis provide some advantages like the embedding capacity is directly proportional to the size of stego image. There will be no image distortion since size of new texture image is user specified. Also it provides the ability to recover source texture from the stego texture image. We can create visually plausible texture images by using this technique.

Keywords: Steganography, Data embedding, Texture synthesis.

1. INTRODUCTION

The meaning of Steganography is to hide text, audio, degree of randomization of the LSB plane. Note that, the video behind the image. The main purpose of LSB plane of most images is random and it does not have steganography is to hide information in such a way that any easily recognizable structure. To capture the degree of attacker cannot detect hidden messages. The application of steganography includes a secure conversion of communication between two parties whose existence is unknown to an attacker and their success depends on detecting the existence of this communication [1].In a stenographic system, the information-hiding process is embedding process replaces these redundant bits with data from the hidden message to form a stego medium.[2] The goal of steganography is to keep the secret message undetectably. Most stenographic methods take over an existing image as a cover medium. When embedding secret messages into this cover image, distortion of image may occur. Because of this reason two drawbacks occur .First, the size of the cover image is fixed, so more secret messages are embedded allow for more image distortion. Therefore to maintain image quality it will provide limited embedding capacity to any specific cover image. Second, that image steganalysis approach is used to detect hidden messages in the stego image. This approach can defeat the image steganography and reveals that a hidden message is being carried in a stego image.

2. LITERATURE SURVEY

J. Fridrich, M. Goljan, and R. Du [3] proposed a scheme for detecting least significant bit (LSB) non sequential embedding in digital images. The length of secret message is derived by examine the lossless capacity in the LSB and shifted LSB plane. The method analyzing lossless data at runtime. Wang Tiles are squares shaped and each edge embedding capacity in the LSBs. Randomizing the LSBs in the decreasing order of lossless capacity in the LSB Plane. Thus, the lossless capacity used to measure the

randomization using classical statistical quantities constrained to the LSB plane is unreliable. The lossless capacity revolves the fact that the LSB plane is related nonetheless to the other bit planes. Even if this relationship is nonlinear, the lossless capacity seems to measure this relationship equitably well. So, this method is used for steganography detection. In this technique, can be reliably detect the presence of secret messages in the images. M. F. Cohen [4] has used to implement an interactive application for texture design and synthesis. Texture is an image which has locality and stochastic property. Locality means small part of the image is look alike and they never look exactly the same (Stochastic). To overcome the memory consumption problems of large images generates a technique for tiling small images to fill a large area. We often need large texture images. So, we need to create large image from small samples .just tiling the samples is not a good method. Wang tile method is used or tile the plane with appropriate samples based on matching colors of adjacent edges.

If the set of tiles is rich enough and there is no periodicity, we can fill inside the tiles anything we want such as texture, geometric primitives etc. Using this method the user can fill Wang tiles on her own. The system interactively displays the result of the tiling. Using Wang Tiles method, once the tiles are filled, can be creates large expanses of non-periodic texture as needed very efficiently is has a color. A valid tiling requires matching colors to all shared edges between tiles. Another advantage is that, using a small set of tiles created from sample patches of a

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

source image a highly compact representation for texture CorelDraw database. This method can embedded a large is achieved. If the two source images contain distributions amount of data at the same time keeping a very high visual of differing densities allows the creation of less uniform quality for all natural images, specifically, the PSNR of textures using two source images. An efficient real-time the marked image versus the original image is guaranteed rendering of complex scenes can be done with modern to be higher than 48 dB. This technique is applicable to all graphics hardware by combining Wang Tiles with Layered types of images. This proposed lossless data hiding Depth Images.

L. Liang, C. Liu[5] synthesizing textures from an input sample. This patch- in terms of pseudo code. based sampling algorithm is very fast and it creates highquality texture image. This algorithm works well for a X. Li, B. Li, B. Yang, and T. Zeng[8], have used a wide variety textures like's regular to stochastic textures. Histogram shifting (HS) technique for reversible data Can be sampling patches using a nonparametric estimation hiding (RDH). Using HS-based RDH method, high of the local conditional MRF density function .Also avoid capacity and low distortion can be achieved. This paper mismatching features across patch boundaries of an image. presents a general framework to construct HS-based RDH The building blocks of the patch-based sampling algorithm technique. Using this proposed framework, can be get a are patches of the input sample texture to construct the RDH algorithm by simply designing shifting and synthesized texture. We can carefully select these patches embedding functions. In this method, first divides the host of the input sample texture and paste it into the image into nonoverlapping blocks such that each block synthesized texture to avoid mismatching features across contains n pixels. Then, generates an n-dimensional patch boundaries. Patch-based sampling algorithm histogram by counting the frequency of the pixel-valuecombines the nonparametric sampling and patch pasting array sized n of each divided block. At last, modifies the strengths .The texture patches in the sampling scheme resulting n-dimensional histogram for implementing the provide implicit constraints to avoid garbage found in data embedding scheme. some textures.

generates a new image by stitching together small patches messages. This paper proposed a method for embedding of existing images. This process is known as image quilting. It is very fast and simple texture synthesis algorithm. By extend this algorithm to perform texture transfer operation. In patch-based texture synthesis procedure, define the square block of user-specified size from the set of all such overlapping blocks in the input texture image. To synthesize a new texture image, let us simply tile the blocks taken randomly from the input texture image. Next step is to introduce some overlap in the placement of blocks onto the new image. Now, search source texture for such a block that agrees some measure with its neighbors along the region of overlap .At last, let the blocks have ragged edges which will allow them to better approximate the features in the texture. Before placing the block into the texture can be calculates error in the overlap region between it and the other blocks. Then find a minimum cost path through that error surface and find boundary of the new block.

Z. Ni, Y.-Q. Shi [7] presented a reversible data hiding algorithm for recover the original image without any distortion from the marked image after the hidden data feature of the iterative patterns of real objects. So that we have been extracted. The zero or the minimum points of the histogram of an image is utilized by this algorithm and on a real object in unnoticeable manner, with quality of the slightly modifies the pixel grayscale values for embedding anteed. We directly paint the data by converting its the data into the image. By comparing the existing numerical value into a dotted colored pattern rather than reversible data hiding algorithms, It can embed more data. changing the color component of images .Then The algorithm applicable to a wide range of images such automatically coat a texture image onto the painted pattern as commonly used images, medical images, texture from a sample image (or exemplar) so as to conceal its images, aerial images and all of the 1096 images in existence with a natural texture pattern.

technique is applied to still images and videos. Videos consist of a sequence of images. In the proposed presented an algorithm for algorithm, embedding and extracting of data are presented

H. Otori and S. Kuriyama [9] have presented a data hiding A. A. Efros and W. T. Freeman [6] proposed a method for techniques tools for protecting copyright or sending secret arbitrary data by synthesizing texture images using the smart techniques of generating repetitive texture patterns through feature learning of a sample image. By extending this technique, a synthesized image can effectively conceal the embedded pattern, and the pattern can be robustly detected from a photographed image. This method introduces a random coating and re-coating to improve the quality of the texture image synthesized from the initial painting of LBP. The algorithm focuses on the textures that are iteratively generated by learning a pattern of an exemplar. This is infeasible for a procedurally and randomly generated pattern. Computes the shape of a histogram of the LBPs for every pixel inside a divided image block and embedded the data onto it. The implementation requires border lines for extracting the square region of a data-embedded area in the texture image. This is done by developing a technique of automatically determining the square region. This paper uses texture images for embedding data because texture patterns are widely utilized artificial images. Texture images can be automatically generated by computing the can embed data by affixing a seal of a synthesized image

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

method. Two key factors, such as frame representation and blending artifacts, that affect the synthesis performance. To improve the synthesis performance from two features. First, effective frame representation is used to capture both the longitudinal information in temporal domain and the image appearance information in spatial domain. Second, Artifacts that reduce the synthesis quality are significantly suppressed on the basis of a diffeomorphic growth model. looks exactly the same as original image. In this method, The proposed video texture synthesis approach has mainly two stages such as video stitching stage and transition smoothing stage. In the video stitching stage, a video drawbacks. First, the size of the cover image is fixed, so texture synthesis model is proposed to generate an infinite embedding more secret messages will leads to image video flow. This paper presents a new spatial temporal distortion. descriptor to gives an effective representation for different embedding capacity and the image quality, which results types of dynamic textures. In the second stage of video in the limited capacity provided in any specific cover synthesis, a smoothing method is presented to improve image. Second, that image steganalytic algorithm can be synthesis quality. It aims to set up a diffeomorphic growth model to emulate local dynamics around stitched frames. First, a Multi-frame LBPTOP frame signature is proposed to capture both the spatial and temporal information. Based on this frame signature, it identifies the most appropriate matching pairs of frames. Second, a diffeomorphic growth model is applied to identify matching frames. For smoother transition, this growth the texture synthesis process with steganography to model can emulate temporal motion around matching frames and estimate virtual frames. This synthesis method has some advantages .First, combines the spatial and temporal description in each feature, which enhances the ability of capturing the relationships among neighboring frames. Second, considers abundant temporal discriminative information, which makes it flexibly adaptive to dynamic textures with different properties. Third, gets more natural visual effects by using the diffeomorphic growth model.

A. A. Efros [11] presented a non-parametric method for texture synthesis. The texture synthesis process emerges a Message embedding procedure & Message extracting new image outward from an initial seed; consider one pixel at a time. The objective of this method is to preserve local structure and produces good results for a wide In message embedding procedure, first divides the source variety of synthetic and real-world textures. The algorithm texture image into image block, called patches. To considers texture, pixel by pixel, outwards from an initial seed. First, chose a single pixel so that the model captures corresponding source patch. Establish a blank image as high frequency information as possible. Using probability tables for the distribution of single pixel can be synthesis referring the source patch IDs stored in the index table to the process by using all possible contexts. An produce a composition image. Then find Mean square approximation can be getting by using various clustering error of overlapped region between the synthesized area techniques. This method generates texture as a Markov Random Field (MRF). It assumes the probability based on increasing order of Mean Square Error .Then distribution of brightness values for a pixel given the brightness values of its spatial neighborhood and the rest of the images are independent. The neighborhood of a pixel is design as a square window around that pixel.

R. Rejani[12] have proposed a pixel pattern based corresponding order in the index table. Arrange blocks steganography. This method involved hiding the message based on their order. To paste the source patches into a within in an image by using the existing RGB values workbench to produce a composition image. In the matchwhenever possible at pixel level or with minimum authentication step, consider the current working location

Y. Guo, G. Zhao[10] proposes a video texture synthesis changes. A key is present along with the image, which can be used to decrypt the message stored at pixel levels. This method presents an improved steganography technique for embedding secret message bit in image metadata fields based on the RGB values and the position of the pixels. The pixels in the image changed only for characters and the algorithm cannot find a pixel which can represent it. Because only the metadata is modified, the stego image only the size of the stego image will increased. Most of the existing image steganographic algorithms have many So it needs a compromise between the used to detect secret messages hidden in the stego image. To overcome these limitations, Kuo-Chen Wu and Chung-Ming Wang [13] have proposed an approach for steganography using a reversible texture synthesis. A texture synthesis process synthesizes a new texture image from a smaller texture image which has a similar local appearance and an arbitrary size. This method combines conceal secret messages.

3. STEGANOGRAPHY BASED REVERSIBLE TEXTURE SYNTHESIS

An approach steganography using reversible texture synthesis is used for hiding the secret messages. A texture Synthesis process synthesizes a new texture image from a small texture image with a similar local appearance and arbitrary size. This method combines the texture synthesis process and steganography for concealing secret messages as well as the source texture. It has two procedures such as procedure

produce an index table for recording the location of the workbench where source patches into workbench by and the patch which want to place .Ranking these patches select patches from list where its rank equals the decimal value of an n-bit secret message. In message extracting procedure, the index table can be generated by using secret key in the receiver side. The size of the source texture can be retrieved by referring each patch region and its

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

on the workbench and also refer the corresponding stego Then, based on this region, to search candidate list to determine the stego block region.

synthetic texture at the same working location to determine if there is a patch in the candidate list where its kernel region is the same as this region.

4. CONCLUSION

In this paper various data hiding techniques were analyzed [3] J. Fridrich, M. Goljan, and R. Du, —Detecting LSB steganography and among them Kuo-for produce a large stego synthetic texture for concealing secret messages. This method provides reversibility to retrieve the original source texture from the stego synthetic textures and it can be used for second round of texture synthesis if needed. Studies show ^[5] that the previous methods have many drawbacks; this can be solved using the new Steganography method using Reversible texture synthesis. This method can achieve reversibility, separate data extraction and image recovery.

ACKNOWLEDGMENT

I am grateful to my project guide Asst. Prof Ms. Sujata **Tuppad** or her remarks, suggestions and for providing all the facilities like providing the Internet access and important books, which were essential. I am also thankful to all the staff members of the Department of Computer [10] Y. Guo, G. Zhao, Z. Zhou, and M. Pietikäinen, -Video texture Science & Engineering of MSS's College of Engineering and Technology, Jalna.

REFERENCES

- F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, -Information [1] hiding survey, Proc. IEEE, vol. 87, no. 7, pp. 1062-1078, Jul. 1999.
- N. Provos and P. Honeyman, -Hide and seek: An introduction to [2] steganography, IEEE Security Privacy, vol. 1, no. 3, pp. 32-44, May/Jun. 2003.

- in color, and gray-scale images, I IEEE MultiMedia, vol. 8, no. 4, pp. 22-28, Oct./Dec. 2001.
- [4] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen, -Wang tiles for image and texture generation, | ACM Trans. Graph., vol. 22, no. 3, pp. 287-294, 2003.
- L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, -Real-time texture synthesis by patch-based sampling, ACM Trans. Graph., vol. 20, no. 3, pp. 127-150, 2001.
- [6] A. A. Efros and W. T. Freeman, -Image quilting for texture synthesis and transfer, | in Proc. 28th Annu. Conf. Comput. Graph. Interact. Techn., 2001, pp. 341-346.
- [7] Z. Ni, Y.-Q. Shi, N. Ansari, and W. Su, -Reversible data hiding, IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 3, pp. 354-362, Mar. 2006.
- [8] X. Li, B. Li, B. Yang, and T. Zeng, -General framework to histogram shifting- based reversible data hiding, IEEE Trans. Image Process., vol. 22, no. 6, pp. 2181-2191, Jun. 2013.
- [9] H. Otori and S. Kuriyama,-Data-embeddable texture synthesis, in Proc. 8th Int. Symp. Smart Graph, Kyoto, Japan, 2007, pp. 146-157.
- synthesis with multi-frame LBP-TOP and diffeomorphic growth model, I IEEE Trans. Image Process., vol. 22, no. 10, pp. 3879-3891. Oct. 2013.
- [11] A. A. Efros and T. K. Leung, -Texture synthesis by nonparametric sampling, in Proc. 7th IEEE Int. Conf. Comput. Vis., Sep. 1999, pp. 1033-1038.
- [12] R. Rejani, D. Murugan and Deepu V. Krishna-Pixel pattern based steganography on imagesl journal on image and video processing, feb 2015, volume: 05, issue: 03
- Kuo-Chen Wu and Chung-Ming Wang-Steganography Using [13] Reversible Texture Synthesis IIEEE Trans .on Image Processing, VOL. 24, NO. 1, Jan 2015